Search results for "Dendritic filopodia"

showing 2 items of 2 documents

The dendritic spines of interneurons are dynamic structures influenced by PSA-NCAM expression.

2013

Excitatory neurons undergo dendritic spine remodeling in response to different stimuli. However, there is scarce information about this type of plasticity in interneurons. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is a good candidate to mediate this plasticity as it participates in neuronal remodeling and is expressed by some mature cortical interneurons, which have reduced dendritic arborization, spine density, and synaptic input. To study the connectivity of the dendritic spines of interneurons and the influence of PSA-NCAM on their dynamics, we have analyzed these structures in a subpopulation of fluorescent spiny interneurons in the hippocampus of glutamic …

MaleDendritic spineTime FactorsInterneuronCognitive NeuroscienceDendritic SpinesGreen Fluorescent ProteinsHippocampusNeuraminidaseMice TransgenicNerve Tissue ProteinsNeural Cell Adhesion Molecule L1BiologyHippocampal formationIn Vitro TechniquesHippocampus03 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicineOrgan Culture TechniquesInterneuronsmedicineAnimals030304 developmental biology0303 health sciencesPolysialic acidGlutamate DecarboxylaseDendritic filopodiamedicine.anatomical_structurenervous systemAnimals NewbornGene Expression RegulationCalbindin 2Excitatory postsynaptic potentialSialic AcidsNeural cell adhesion moleculeCholecystokininSomatostatinNeuroscience030217 neurology & neurosurgeryVasoactive Intestinal PeptideCerebral cortex (New York, N.Y. : 1991)
researchProduct

Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor.

2004

The Trk family of receptor tyrosine kinases and the p75 receptor (p75NTR) mediate the effects of neurotrophins on neuronal survival, differentiation and synaptic plasticity. The neurotrophin BDNF and its cognate receptor tyrosine kinase, TrkB.FL, are highly expressed in neurons of the central nervous system. At later stages in postnatal development the truncated TrkB splice variants (TrkB.T1, TrkB.T2) become abundant. However, the signalling and function of these truncated receptors remained largely elusive.We show that overexpression of TrkB.T1 in hippocampal neurons induces the formation of dendritic filopodia, which are known precursors of synaptic spines. The induction of filopodia by T…

Time FactorsGreen Fluorescent ProteinsReceptors Nerve Growth FactorTropomyosin receptor kinase ATransfectionTropomyosin receptor kinase CHippocampusModels BiologicalPC12 CellsReceptor Nerve Growth FactorReceptor tyrosine kinaseLow-affinity nerve growth factor receptorAnimalsReceptor trkBNerve Growth FactorsPseudopodiaCloning MolecularNeuronsbiologyDose-Response Relationship Drugmusculoskeletal neural and ocular physiologyCell DifferentiationCell BiologyDendritesImmunohistochemistryDendritic filopodiaCell biologyProtein Structure TertiaryRatsnervous systemMicroscopy FluorescenceTrk receptorembryonic structuresNeurotrophin bindingCOS Cellsbiology.proteinsense organsNeurotrophinProtein BindingSignal TransductionJournal of cell science
researchProduct